

Comparisons of CFD Simulations of Icing Wind Tunnel Clouds with Experiments Conducted at the NASA Propulsion Systems Laboratory

Tadas Bartkus - Ohio Aerospace Institute

Peter Struk - NASA Glenn Research Center

AIAA Aviation Forum and Exposition
June 15 -19, 2020

- Introduction/Objective
- Experiment description
- Model development description
- Simulation evaluation with experimental data
- Summary

- Introduction/Objective
- Experiment description
- Simulation description
- Simulation evaluation with experimental data
- Summary

Introduction – Why Study Engine Icing?

- Numerous events of power-loss and engine damage since the 1990s
- Engine icing studied at NASA (from full scale engine to fundamental studies at PSL)
- NASA's Goal: Gather data to develop & validate computational icing tools to predictively
 assess the onset & growth of ice in current and future engines during flight
 - Requires good data

Simulate PSL Tunnel for Better Results

- Conditions at the tunnel inlet are known, but conditions are not known at exit plane (test section)
- Efforts made to measure conditions at exit plane
- Previous simulation efforts investigated flow and particle behavior using rigid particles (Feier, 2019)
 - Cloud concentration, but spray bars generate vortex shedding, and large scale vortices downstream dispersing particles
- Activation of the cloud at PSL thermodynamically interacts with the flowing air
- Desire to know the aero-thermal and cloud conditions more accurately at the tunnel test section
- TADICE (1D) developed to simulate the tunnel by thermodynamically coupling the flowing masses
- 1D model cannot explain measured radial variations

Objectives

- Develop fully coupled 3D CFD model of the PSL icing wind tunnel
 - Explain change in aero-thermal and cloud conditions measured experimentally
 - Explain radial and circumferential variation
- Compare simulation predictions with experimental measurements (cloud water content, humidity, air temperature) at tunnel exit plane

- Introduction/Objective
- Experiment description
- Simulation description
- Simulation evaluation with experimental data
- Summary

NASA 2018 Fundamental Physics ICI Tests

Goals:

- 1. Generate a prescribed mixed-phase icing condition with a well-characterized test section (air temp, humidity, pressure, cloud particle size, cloud melt ratio, etc.)
- 2. See how ice accretion varies by changing a condition and understand underlying physics

Spray Nozzle Configurations

Cloud Objectives:

- Maintain the center 0.15 m

 (6 in) diameter area
 approximately uniform at the test section
- 2. Contain the entire cloud within an approximately 0.61-m (24-in) diameter area (tomography used)

Test Conditions

Test	U _e	ρ_0	T_0	RH_0	TWC _{e,bulk}
Condition #	m/s	kPa (psia)	°C	%	g/m³
I	85	44.8 (6.5)	7.2	34	2.2
II	135	44.8 (6.5)	7.2	33	2.0
III	185	44.8 (6.5)	7.2	33	2.1
V	135	44.8 (6.5)	7.2	35	5.0

Notes:

- Value of TWC as calculated for area of 24" diameter at test section, assuming no mass loss to evaporation
- Initial $MVD = \sim 20 \mu m$ for all tests
- Initial water temperature = 7.2 °C
- Wet-bulb
 Temperature < 0 °C

Instruments

Instrument (Abbreviation)	Measurement	
Multiwire probe (MW)	Total Water Content	
Isokinetic Probe, version 2 (IKP)	Total Water Content	
Tomography (Tomo)	Total Water Content / Cloud Uniformity	
Isokinetic Probe, version 2 (IKP)	Humidity	
Rearward Facing Probe (RFP)	Humidity	
Rearward Facing Probe (RFP)	Total Air Temperature	
Rosemount Total Air Temperature Probe (TAT)	Total Air Temperature	

- Ice Crystal Detector (ICD) TWC, melt ratio
- High Speed Imaging Probe (HSI) Particle size distribution
- Phase Doppler Interferometer (PDI) Particle size distribution

Not utilized in this paper

Instrument Probing Locations (Tunnel Exit)

Notes:

- Aft-looking-forward
- Cartesian coordinate in inches
- Experiment points in red ovals compared to simulation predictions

- Introduction/Objective
- Experiment description
- Simulation description
- Simulation evaluation with experimental data
- Summary

Geometry and Mesh Generation

Notes:

- PSL geometry modeled from Inlet Plane to Exit Plane
- Meshing via Pointwise
- 2.96 million structured hexagonal cells
- Spray bar system geometry not included

CFD Simulation – Key Parameters

- Steady-state simulations run with ANSYS Fluent
- Utilized Discrete Phase Model (DPM) to simulate cloud particles
- Fully coupled energy and mass exchange between air and cloud simulated
- Individual nozzles ejecting water droplets in a cone simulated
- PSD approximated using Rosin-Rammler distribution
- Standard k-epsilon viscous flow with 10% turbulence used at inlet BC
- Discrete Random Walk Turbulent Dispersions
- Freezing was not simulated

- Introduction/Objective
- Experiment description
- Simulation description
- Simulation evaluation with experimental data
- Summary

CFD Simulation Results – Cond II (Water Content)

Notes:

- Radial variation due to centralized nozzle configuration at inlet
- "Donut Shape" predicted

CFD Simulation Results – Cond II (Humidity and Temp)

Notes:

"Donut hole" less prominent with air mass related conditions

Sim/Exp Comparison – Cond II (Water Content)

Notes:

- U = 135 m/s $TWC_{e,bulk} = 2 g/m^3$
- Simulation peak
 TWC values
 correspond to
 location of nozzles
 in the center
 vertical axis

Sim/Exp Comparison – Cond II (Humidity and Temp)

Notes:

Change = cloud off

No centerpoint measurement for RFP

Sim/Exp Comparison – Cond I, II, III (Tomography)

- Introduction/Objective
- Experiment description
- Simulation description
- Simulation evaluation with experimental data
- Summary

Summary

- Fully coupled 3D CFD model of the PSL icing wind tunnel was developed
- Simulations of icing cloud development were compared with experimental data
- Simulation did not predict as much cloud dispersal
 - Simulating spray bar geometry may capture greater dispersal
- Simulation captured humidity change and temperature change fairly well
 - Did not predict cloud dispersal (particles), but did capture evaporation (molecular)
- Some cloud concentrating aspects captured when velocity increased

Acknowledgments

- The authors wish to acknowledge the Advanced Aircraft Icing (AAI) subproject of the NASA Advanced Air Transport Technology Project (AATT) for financial support of this work.
- I would like to thank my Icing Branch colleagues at NASA GRC for technical guidance.

Thank you

